
McBoost: Boosting Scalability in Malware Collection and Analysis Using
Statistical Classification of Executables

Roberto Perdisci1,3, Andrea Lanzi2,3, Wenke Lee3,1

{perdisci@damballa.com, andrew@idea.sec.dico.unimi.it, wenke@cc.gatech.edu}

1Damballa, Inc. Atlanta, GA 30308, USA
2Dip. di Informatica e Comunicazione, Universitá degli Studi di Milano, Italy

3College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

In this work, we propose Malware Collection Booster
(McBoost), a fast statistical malware detection tool that is
intended to improve the scalability of existing malware col-
lection and analysis approaches. Given a large collection of
binaries that may contain both hitherto unknown malware
and benign executables, McBoost reduces the overall time
of analysis by classifying and filtering out the least suspi-
cious binaries and passing only the most suspicious ones to
a detailed binary analysis process for signature extraction.

The McBoost framework consists of a classifier special-
ized in detecting whether an executable is packed or not, a
universal unpacker based on dynamic binary analysis, and
a classifier specialized in distinguishing between malicious
or benign code. We developed a proof-of-concept version of
McBoost and evaluated it on 5,586 malware and 2,258 be-
nign programs. McBoost has an accuracy of 87.3%, and an
Area Under the ROC curve (AUC) equal to 0.977. Our eval-
uation also shows that McBoost reduces the overall time of
analysis to only a fraction (e.g., 13.4%) of the computation
time that would otherwise be required to analyze large sets
of mixed malicious and benign executables.

1 Introduction

Malicious executables pose a significant threat to the In-
ternet. As a consequence of malware infection, a victim
machine may unintentionally expose sensitive information,
participate in remotely coordinated large scale attacks, be-
come a spam sender, host phishing websites, etc. Malware
analysis techniques are used for understanding the behav-
ior of malicious executables and extracting signatures use-
ful for detection and containment.

The first step in malware analysis is collecting new mal-

ware samples. Existing malware collection tools usually
rely on honeypots [26], spam traps [14], and other passive
techniques. However, these techniques are “slow” because
they require waiting until a new malware starts propagat-
ing on a large scale before collecting a copy of it. For ex-
ample, by the time a new malware hits a honeypot it may
have already infected a large number of machines. Ac-
tively looking for malware in the Internet has been proposed
for example in [21], although in this case the search is re-
stricted to a limited number of suspicious URLs that are
considered to be responsible fordrive-bymalware down-
loads. Crawling P2P networks or the Web is one alterna-
tive to the more traditional honeypots and spam traps, and
may help reduce the time it takes to collect a new piece of
malware. This is true in particular for malware that spread
mainly via P2P [19, 7]. Another collection strategy may
be to use anexecutables sniffer, which may be deployed
at the edge of a network to “sniff” the PE (portable exe-
cutable) executables that the users of the monitored network
are downloading [22]. Considering the disadvantages of
traditional malware collection approaches described above
(e.g. honeypots and spamtraps), these alternative and more
active collection strategies are attractive because they help
reduce the time it takes to discover new malware. However,
crawling P2P networks or the Web, and “sniffing” executa-
bles may result in a very large collection of binaries (e.g.,
several thousands) that contains a small number of hitherto
unknown malware and a high number of benign executa-
bles. This would overwhelm most existing binary analy-
sis approaches, for example [8, 24], because they typically
need to run each executable for several minutes to under-
stand its behavior. Therefore, we need a way to quickly and
accurately classify the executables intomalwareor benign,
thus allowing us to filter out the least suspicious binaries
and focus the analysis on only the most suspicious ones.

Statistical classification of executables provides a way

1

to quickly classify executables intomalware or benign,
and has been explored in a number of works, for exam-
ple [17, 9, 15, 25]. In particular,n-gram analysis has been
shown to be quite successful in detecting malicious exe-
cutables. However, to the best our knowledge no previous
work on statistical malware detection usingn-gram analysis
takes into account the fact that most malware (92%, accord-
ing to [4]) use executable packing techniques [18, 20] in
order to hide their malicious code. Furthermore, previous
works do not consider the fact that some benign executa-
bles also use packing techniques in order to protect them-
selves against violations of commercial licenses. We will
show in Section 3 that not taking executable packing into
account during the training of classifiers based onn-gram
analysis such as the one proposed in [9], for example, may
cause their classification accuracy to degrade. In particular,
these classifiers may become biased in distinguishing be-
tweenpackedandnon-packedexecutables, instead of cor-
rectly distinguish betweenmalwareandbenignexecutables.
As a consequence, packed benign executables would likely
cause false positives, whereas non-packed malware may re-
main undetected.

In this paper, we propose Malware Collection Booster
(McBoost), a new fast and accurate statistical malware de-
tection tool that takes executable packing into account, and
is intended to improve the scalability of existing malware
collection and analysis approaches. Given a large collection
of binaries that may contain both hitherto unknown mal-
ware and benign executables, McBoost reduces the over-
all time of analysis by classifying and filtering out the least
suspicious binaries and passing the most suspicious ones
to a detailed binary analysis process for signature extrac-
tion. Figure 1 presents an overview of McBoost. Our sys-
tem consists of three modules:A) A classifier specialized
in detecting whether an executable is packed or not;B) a
universal unpacker based on dynamic binary analysis; and
C) a classifier specialized in distinguishing between mali-
cious or benign code. If an executablee is deemed packed
by moduleA, it will be given to an external unpacker (mod-
uleB) for hidden code extraction, and then the hidden code
will be passed to moduleC. In case the unpacker is not able
to extract any hidden code (perhaps becausee implements
strong anti-emulation techniques),e will be added to a list
of (likely) “heavily” packed executables which need to be
manually inspected (and thus will not be further analyzed
by McBoost). The executables are stored into this list along
with additional information on what caused the unpacker to
fail (e.g., time-out, application crash, malformed PE header,
etc.). On the other hand, if the executable is deemed non-
packed by moduleA, the code portion of the executable will
be directly given to moduleC. ModuleC will then output
the probability that the executable being tested contains ma-
licious code.

Figure 1: Overview of McBoost Classification System.

It is worth noting that there exists evidence that more
than 50% of new malware are simply re-packed versions of
already known malware [20]. Therefore, detecting packed
malware, and then unpacking them, helps the accuracy of
classifierC because the extracted hidden code will likely
be similar to malicious code seen byC during the training
phase.

We will show in Section 3 that modulesA andC pro-
vide fast and accurate classification. On the other hand,
moduleB performs dynamic-analysis-based universal un-
packing in a very similar way as [8], and is therefore com-
putationally expensive. However, in the case of malware
collection via P2P, Web crawling, orexecutable sniffing,
we expect the percentage ofzero-daymalware to be fairly
small compared to the benign executables (note that here
we assume the known malware have already been filtered
out using signature-based AV-software). Given that most
benign executables are non-packed, the majority of the col-
lected executables will be quickly and accurately classified,
and be passed directly from moduleA to moduleC with-
out the need to attempt a time-consuming unpacking pro-
cess. Therefore, McBoost provides a fast way to correctly
classify and filter out most of the benign executables, thus
decreasing the workload of the tools (and humans) that are
responsible for performing further detailed binary analysis.
This makes the collection and analysis of new malware scal-
able in the presence of large sets of mixed (unknown) mal-
ware and benign executables. Without a system like Mc-
Boost this process would take too much time, because all
the collected executables would need to undergo a time-
consuming analysis, and even by using sophisticated binary
analysis tools (e.g., [24]) the average time needed to an-
alyze and classify each single executable is still very high
(e.g., several minutes).

ModulesA andC both usen-gram analysis for differ-
ent classification purposes, as we discuss in Section 2. We
would like to emphasize the fact that althoughn-gram anal-

ysis for malware detection has already been used in a num-
ber of previous works [9, 15, 25], we applyn-gram analysis
in a novel way. Differently from other works, we recog-
nize that not taking into account the fact that most malware
are packed may degrade the classification accuracy of pre-
viously proposed malware detection approaches (see Sec-
tion 3). Therefore, we propose to usen-gram analysis in
combination with heuristics approaches in order to accu-
rately distinguish between packed and non-packed executa-
bles, first. Then, we study the effectiveness ofn-gram anal-
ysis for the detection of hidden code extracted from packed
executables. The hidden code extracted using universal un-
packing may only partially include the original malicious
code, as we discuss in Section 2.2. However, we show in
Section 3 that even in this casen-gram analysis may still
allow us to detect malicious code with relatively high accu-
racy. To the best of our knowledge, this is also a new result.

We developed a proof-of-concept version of Mc-
Boost and evaluated it on 5,586 distinct known mal-
ware from the Malfease dataset (http://malfease.
oarci.net) and 2,258 benign extracted from an instal-
lation of Windows XP Home with the addition of common
user applications (e.g., WinZIP, WinAmp, AcroRead, etc.).
We obtained a classification accuracy of 87.3% (using a de-
tection threshold equal to 0.5) and an Area Under the ROC
curve (AUC) equal to 0.977. The AUC can be interpreted as
the probability of scoring malware executables higher than
benign executables [5], and shows that our classification ap-
proach is very promising. Our evaluation also shows that
the total time it takes for modulesA andC to classify an
PE executable is as low as 1.06 seconds, on average. This
means that McBoost is able to quickly filter out the least
suspicious executables, thus reducing the number of bina-
ries that need to undergo detailed, time-consuming, binary
analysis for studying possible malicious behavior and ex-
tracting a detection signature. Therefore, McBoost reduces
the overall time of analysis to only a fraction (e.g., 13.4%)
of the computation time that would be otherwise required to
analyze large sets of mixed malicious and benign executa-
bles.

The remainder of the paper is organized as follows. We
present the details of our McBoost classification system in
Section 2. In Section 3 we report the experimental results.
We discuss the most relevant related work in Section 4, and
then we briefly conclude in Section 5.

2 McBoost’s Internals

McBoost consists of three modules, namely moduleA,
B, andC, as shown in Fig. 1. In this section we describe the
internals of each single module.

2.1 Detecting Packed Executables

ModuleA performs detection of packed executables us-
ing a Multiple Classifier System (MCS) [10] that combines
three classifiers (see Fig. 1). The first classifier is based on
a number of heuristics on the structure of the PE file (A1) as
proposed in [13]. The second classifier is based onn-gram
analysis of the code portion of the executable (A2), while
the third classifier is based onn-gram analysis of the entire
binary (A3). Although each single module has already high
detection accuracy (see Section 3), we combine moduleA1
to A2 andA3 in order to make the classification of packed
executables even more accurate and robust against evasion.

The design and implementation of moduleA2 andA3,
and the MCS that combines them withA1 to improve on
the accuracy and robustness of single classifiers is one of
the contributions of this work.

2.1.1 Heuristics-based Classifier

Module A1 performs classification of packed vs. non-
packed executables using a number of heuristics extracted
from the structure of PE files. We use the approach pro-
posed in [13]. We extract nine features from the PE file,
namely: 1) Number of standard sections; 2) Number of
non-standard sections; 3) Number of Executable sections;
4) Number of Readable/Writable/Executable sections; 5)
Number of entries in the IAT; 6) Entropy of the PE header;
7) Entropy of the code (i.e., executable) sections; 8) Entropy
of the data sections; 9) Entropy of the entire PE file.

A Multi-Layer Perceptron (MLP) classifier that uses
these features is trained to distinguish between packed and
non-packed executables, as we describe in Section 3. We
chose to use MLP because this classification algorithm was
shown to achieve better accuracy and generalization abil-
ity than other classification algorithms and signature-based
detection approaches [13].

2.1.2 n-gram-based Classifiers

ModulesA2 andA3 performn-gram analysis of the code
section and of the entire PE file, respectively. Each PE ex-
ecutable can be seen as a binary strings. For moduleA2,
s represents only the code section, whereas forA3 it rep-
resents the entire file. Given a training dataset of packed
and non-packed executables, we create a dataset of binary
stringsS(P) = {s

(P)
i }i=1..k derived from the packed exe-

cutables, and a datasetS(N) = {s
(N)
i }i=1..l derived from

the non-packed executables, and we callS = S(P) ∪ S(N).
An n-gram is defined as ann-bytes-long substring of a

binary strings. We extract all the possiblen-grams from
each strings ∈ S, and then we select theM most informa-
tive n-grams, i.e., the most discriminative (or “powerful”)

features that allow us to separate instances of the positive
and negative class, according to an information gain met-
ric [23]. Specifically, the information gain of ann-gramg

is

IG(g) =
∑

c

P (c)
1

log P (c)

+P (g)
∑

c

P (c|g) log P (c|g)

+P (ḡ)
∑

c

P (c|ḡ) log P (c|ḡ)

wherec ∈ {P ,N} represents either the class of packed
executablesP or the class of non-packed executablesN ,
P (c|g) is the probability of a strings (i.e., an executable)
being of classc given thatg is present ins, andP (c|ḡ) is
the probability of a strings being of classc given thatg is
not present ins.

Once theM most informativen-grams have been se-
lected, each executablee can be translated into a binary vec-
tor f(e) = x ∈ {0, 1}M , where thei-th elementxi tells us
whether the strings that represents the executable (either its
code or the entire file) contains thei-th most informativen-
gram (xi = 1) or not (xi = 0). Using this approach,S can
be translated into a labeled dataset of pattern vectors that
can in turn be used to train a statistical classifier.

We use a Bagged-Decision-Tree (BDT) classifier [3] for
both A2 andA3. Bagged-Decision-Trees usually perform
very well and have the characteristic of producing calibrated
posterior class probabilities [11], which may be useful when
combining multiple classifiers (see Section 2.1.3). The de-
tails regarding the algorithm and parameters we used for
training the classifiers are reported in Section 3.

The utility ofn-gram analysis for the code section (mod-
ule A2) is intuitive. The average length of the instructions
of Windows executables for x86 processors is between 2
and 3 bytes (we measured it on the code section of thou-
sands of benign executables). Choosingn ≥ 2, the pres-
ence or absence of an informativen-gram is related to the
presence or absence of a certain instruction in the code, or
a sequence of instructions, given that ann-gram may cap-
ture the end of an instruction and the beginning of the next,
for example. Therefore, each element of a pattern vec-
tor f(e) = x ∈ {0, 1}M given to the classifier is related
to the presence or absence of an instruction or sequence
of instructions in the code of an executablee. Since the
code section of a packed executable usually contains the
unpacking/decryption routine and (possibly) the hidden (en-
crypted) code, its distribution ofn-grams will likely be dif-
ferent from the distribution ofn-grams of a non-packed ex-
ecutable. ModuleA2 is designed to detect this difference in
the distribution ofn-grams.

The utility of n-gram analysis for the entire file (module
A3) is also intuitive. If the hidden (encrypted) code is stored

in a data section, hidden in unused fields of the main and
section headers, or somewhere else in the file, moduleA2
may not detect the fact that the executable is packed. The
n-gram analysis on the entire file adds a piece of evidence
for making a final decision, and is based on the fact that the
presence of encrypted code in the file will cause a perturba-
tion of the overall “normal” distribution ofn-grams (i.e., the
distribution ofn-grams of non-packed executables). There-
fore, moduleA3 tries to capture this perturbation.

2.1.3 Combining Multiple Classifiers

For each input executablee, the output of each of the
modulesA1, A2 and A3 is a posterior class probability
PAi

(P|e), i.e., the probability thate is a packed executable
as estimated by moduleAi , with i=1, 2, 3. Module A is
a Multiple Classifier System (MCS) [10] that combines the
output ofA1, A2, andA3, and produces an overall posterior
class probabilityPA(P|e) of e being packed.

Multiple Classifier Systems usually perform better than
the single classifier in the ensemble. This is particularly
true when the classifiers arediverse, in the sense that they
make different (ideally independent) mistakes on different
input vectors (i.e., different representations of PE executa-
bles, in our case) [10]. Diversity may be induced in a num-
ber of ways [6]. In our application we introduced diversity
amongA1, A2, andA3 by training them on diverse repre-
sentations of the same dataset of packed and non-packed ex-
ecutables. Also, we used different classification algorithms
(Multi-Layer Perceptron forA1 and Bagged-Decision Trees
for A2 andA3). Another important characteristic of MCS
is that the output of the single classifiers should be compa-
rable [6]. We chose Multi-Layer Perceptron and Bagged-
Decision-Tree as base classifiers because they both out-
put well-calibrated posterior class probabilities [11]. Also,
MCS are more robust and have been shown to be useful in
making evasion by mimicry attacks harder [12]

We use a simple but effective combination rule to com-
bine the output ofA1, A2, andA3, namely the average of
probabilities [10] and we set a decision thresholdθ so that
if PA(P|e) = 1

3

∑
i=1..3 PAi

(P|e) > θ the executablee is
classified aspacked(and sent to the unpacker), otherwisee

is classified asnon-packed(and sent directly to moduleC).
θ can be tuned in order to find the desired trade-off between
the false positive and false negative rates for moduleA.

2.2 Extracting Hidden Code

We implemented our unpacker (moduleB) in a way very
similar to Renovo [8], using the QEMU emulator [1]. Ev-
ery time an instructioni is executed on behalf of a process
P , the unpackerU will intercept it and check whetheri was
previously dynamically generated byP itself. If this is the

case,i will be marked ashiddencode. i will then be con-
sidered as the first instruction of alayer of unpacking [8].
WheneverU detects thatP is trying to execute a new dy-
namically generated instructioni′, this will mark the end of
a layer of unpacking and the start of a new one.U will then
dump the binary code of the first layer to disk and will keep
tracing the execution of the next layer [8].

We adopt two different strategies to dump thehiddenbi-
nary code in each layer of unpacking:

• bpage. This strategy dumps all the memory pages
where the instructions belonging to a hidden layer re-
side. For example, assume instructioni1 belongs to an
unpacking layerl and is located in pagep1, and an-
other instructioni2 also belongs to the same layerl,
but is located in pagep2. In this case both thep1 and
p2 (the entire pages) will be dumped byU and marked
as related to the layerl.

• bbexec. This strategy dumps only the instructions of a
layer of unpacking that were actually executed byP .
In order to do this, the monitorU keeps trace of the in-
structions in the QEMU translation blocks [1] (or basic
blocks) that were actually executed by the emulator.

Thebbexecdumps may be useful in those cases when a bi-
nary is packed using executable packing tools that perform
encryption/decryption operations at the single instruction
level. On the other hand, thebpagedumps may be useful to
extract the hidden code of binaries that were packed by ex-
ecutable packing tools that perform encryption/decryption
at the memory page level. It is worth noting that both tech-
niques may provide only a partial reconstruction of the orig-
inal executable code embedded in the packed binary.

We set two time-out parameters, namely aper layer
time-outTl and aglobal time-outTg. If any time-out is
reached the processP will be terminated. Apart from reach-
ing a time-out, there are other reasons whyU may terminate
the processP . For example, our unpacker is able to in-
tercept calls to theNtRaiseHardError native API and
therefore report an application crash. Also, the unpacker is
able to detect “normal” process exits and system errors.

2.3 Detecting Malicious Code

Similarly to moduleA2, the classifiers in moduleC are
based on then-gram analysis of the code portion of exe-
cutables. The difference is in the fact that moduleA2 is spe-
cialized in detecting packed vs. non-packed code, whereas
modulesC1 andC2 are responsible for distinguishing be-
tween malware vs. benign non-packed or hidden (extracted
by the unpacker) code, respectively. The design and imple-
mentation of specialized classifiers based onn-gram analy-
sis of non-packed code (C1) and hidden code extracted from

packed executables (C2) is one of the contributions of this
work.

In order to train moduleC1 we collect a dataset of non-
packed malware and non-packed benign executables (the
details of how we construct the dataset are reported in Sec-
tion 3.1.1), and extract their code sections. We then select
the M most informativen-grams in the code of executa-
bles from the two classes, as explained in Section 2.1.2,
and we use thesen-grams to translate each executable into
a pattern vector representation that can be used to train a
statistical classifier. As for modulesA1 and A2, we use
Bagged-Decision-Trees (BDT) as classifier. During test,
for each analyzed executablee the output of moduleC1
(i.e., of the BDT classifier) is an estimate of the probabil-
ity P (malware|e) thate’s (non-packed) code is malicious.

We use the same approach to train moduleC2. The
only difference is that the training dataset is made of a
collection of hidden-code extracted (using our unpacker)
from packed malware and packed benign executables. Like
for C1, the output ofC2 is an estimate of the probability
P (malware|e) thate’s hidden code is malicious. The use
of either moduleC1 or moduleC2 for each executablee un-
der test depends on the results of modulesA andB (i.e., of
the packer detector and the unpacker), as explained above
(at the beginning of Section 2) and shown in Fig. 1.

The intuition behind the use ofn-gram analysis is that
the presence or absence of an informativen-gram (see Sec-
tion 2.1.2) is related to the presence or absence of a certain
instruction or sequence of instructions in the code of an ex-
ecutablee. We speculate that the code section of malicious
executables contain certain instructions, or sequences ofin-
structions more than others. These instructions are used to
carry out malicious activities and may not be present with
the same frequency or sequence in benign code. This in-
tuition is (partially) in accordance with the results reported
in [2]. ModulesC1 andC2 capture this difference in the
distribution of sequences of instructions between malicious
and benign code usingn-gram analysis.

3 Experiments

In this section we discuss in detail how we performed the
evaluation of McBoost and its components, and we present
the obtained experimental results. We performed our exper-
iments on a machine with a 2GHz dual-core AMD Opteron
processor and 8 GByte of memory.

3.1 Experimental Setup

3.1.1 Preparation of the Datasets

To evaluate the effectiveness of McBoost, we collected sev-
eral thousands of Windows benign and malicious PE exe-

cutables. Overall we collected 5,586 distinct known mal-
ware binaries and 2,258 benign, which we divided in the
following labeled datasets:

Malware-Dataset (MDset). We collected a set of 5,586
malware executables from the Malfease dataset (http:
//malfease.oarci.org) in July 2007. We used three
Anti-virus (AV) software products, namely clamAV (www.
clamav.net), F-Prot (www.f-prot.com), and AVG
(free.grisoft.com), to verify that the binaries col-
lected from the Malfease dataset were actually all know
malware.

Packed-Malware-Dataset (PMDset). We used PEiD
(http://www.peid.info) and the packer-detection
capabilities of F-Prot to select packed malware binaries
from Malware-Dataset, and we obtained 2,078 packed bi-
naries. PEiD detected 2,039 binaries packed using around
70 distinct packers, whereas F-Prot detected 328 binaries
packed using 20 distinct packers. The two sets slightly over-
lap. For around one third of the malware detected as packed
by F-Prot, the use of multiple layers of packing was reported
(to the best of our knowledge, PEiD is not capable of detect-
ing multi-layer packing).

Non-Packed-Malware-Dataset (NPMDset). We filtered
out the binaries in Packed-Malware-Dataset from the
Malware-Dataset, thus keeping 3,508 binaries. On this set
we ran Polyunpack [16] and our dynamic unpacker and
found 174 executables for which neither Polyunpack nor
our unpacker were able to extract any hidden code, and that
did not cause any error (e.g., application crash). On these
174 executables we also ran Renovo1 [8] in order to further
filter any possibly packed executable missed (i.e., no hid-
den code was detected) by Polyunpack and our unpacker2.
We filtered-out the binaries for which Renovo was able to
extract any hidden code and we obtained 146 likely non-
packed malware (although this dataset may still contain few
packed executables, we believe the use of multiple state-of-
the-art techniques allowed us to reduce possible noise to a
minimum).

Other-Malware-Dataset (OMDset). This dataset con-
sists of the 3,362 malware in MDset that do not belong
to neither PMDset nor NPMDset. Although many of this
executables are likely packed (because at least one of the
three universal unpackers we used was able to extract some
kind of hidden code from them), they were not detected by

1We were able to do this thanks to the kind collaboration of theauthors
of Renovo.

2Although our universal unpacker follows the design described in [8],
some implementation details may be different, and therefore the result of
unpacking may differ from the result obtained with Renovo, in some cases.

the signature-based packer detectors, i.e., PEiD and F-Prot.
Therefore, we chose not to include them in the PMDset be-
cause we did not want to risk to “poison” the PMDset with
the possible false positives caused by dynamic unpackers3

(i.e., either Polyunpack, our unpacker, or Renovo).

Benign-Dataset (BDset). We collected 2,258 benign ex-
ecutables extracted from an installation of Windows XP
Home with the addition of common user applications (e.g.,
WinZIP, WinAmp, AcroRead, etc.). We double checked
these binaries using clamAV, F-Prot, and AVG to verify that
the collected binaries were actually benign applications.We
also submitted the binaries for which we had any doubts
to VirusTotal (www.virustotal.com) to check them
against a diverse set of AV-software.

Packed-Benign-Dataset (PBDset). We ran PEiD on
Benign-Dataset and we found 27 packed binaries (i.e.,
around 1.2% of the benign), most of which were packed
with UPX. Also, we selected 45 benign executables from
the start menu of a clean Windows XP installation and we
packed each one of them with 17 different popular pack-
ers (including UPX (upx.sourceforge.net), ASpack
(www.aspack.com), Themida (www.oreans.com/
themida.php), Obsidium (www.obsidium.de), etc.)
That is, for each of these executables, we created 17
packed executables. For each packer we enabled all of the
available anti-debugging and anti-reverse engineering tech-
niques. We verified that some packers failed to correctly
pack several binaries, causing them to fail when executed.
Therefore, we pruned the dataset keeping 195 binaries that
still worked correctly after packing. Overall, we obtained
222 (195 plus 27) packed benign executables.

Non-Packed-Benign-Dataset (NPBDset).This dataset
was obtained by removing the 27 packed benign we found
in Benign-Dataset, thus keeping 2,231 non-packed benign.

3.1.2 Parameter Setting

In this section we discuss how we set the parameters of
each module of McBoost. For constructing the classifiers
we use WEKA (http://www.cs.waikato.ac.nz/
ml/weka), a collection of open-source data mining soft-
ware written in Java. For moduleA1 (see Section 2) we use
a Multi-Layer Perceptron (MLP) classifier. Our MLP has
three layers, namely an input layer, a hidden layer and an
output layer. The input layer has 9 nodes (equal to the num-
ber of features extracted byA1), whereas the output layer

3We found that some executables dynamically generate few executable
instruction in memory and then jump on them, although they did not ap-
pear to be packed with executable packing tools, according to our manual
analysis.

Classifier Accuracy FP DR AUC
A1 (heuristics) 0.973 0.012 0.958 0.995
A2 (n-gram on code) 0.976 0.034 0.987 0.981
A3 (n-gram on file) 0.993 0.004 0.990 0.993
A (multiple classifiers) 0.994 0.008 0.996 0.997

Table 1: Validation of moduleA for packedvs. non-packedclassi-
fication using a detection threshold = 0.5 (FP = false positive rate,
DR = detection rate).

has two nodes (one for each class label). We set the number
of perceptrons in the hidden layer to 5. ModulesA2, A3,
C1, andC2 (see Section 2) are all built using Bagged-J48
(J48 is an implementation of the well-known C4.5 decision-
tree classifier). For each module, the Bagged-J48 is con-
structed by combining 10 base decision-tree (J48) classi-
fiers. We usedn-grams withn = 3 for A2, A3, and
C1, whereas we usedn = 2 for C2 because it produced
much better results then usingn = 3. Theper layerand
global time-out for our unpacker (moduleB) were set to
Tl = 4 minutes andTg = 20 minutes, respectively (see
Section 2.2).

3.2 Validation of Single Modules

Detection of Packed Executables (Module A). In order
to test moduleA, and its sub-modulesA1, A2, and A3,
we constructed a labeled dataset of packed and non-packed
executables. By merging the dataset of packed malware
PMDset and the dataset of packed benign PBDset we ob-
tained the dataset of packed executables. The dataset of
non-packed executables was constructed by merging the
dataset of non-packed benign NPBDset and the dataset of
non-packed malware NPMDset. Overall, we obtained a
dataset which consisted of 2,300 packed executables and
2,377 non-packed executables. We then randomly split this
dataset into two portions, a portion made of 80% of the data
used for training the classifiers, and a portion made of the
remaining 20% of the data for testing. The classification
results are reported in Table 1. The accuracy, false posi-
tives and detection rate were computed setting the detection
thresholdθ = 0.5 (in the following we will always assume
θ = 0.5 for moduleA, unless otherwise specified). The
average time needed for the classification of an executable
was 1.025 seconds. As we can see from Table 1, the com-
bination of classifiers improves on the already very good
performance of the single classifiers, in particular in terms
of AUC. Also, combining diverse classifiers contributes in
making evasion attempts intuitively harder.

Extracting Hidden Code (Module B). In order to vali-
date the performance of our implementation of the dynamic
unpacker (module B), we tested it with the executables
in the PMDset (2,078 packed malware) and PBDset (222

Classifier Accuracy FP DR AUC
C1 (non-packed code) 0.823 0.026 0.772 0.959
C2 bpage(hidden code) 0.938 0.0 0.937 0.988
C2 bbexec(hidden code) 0.745 0.112 0.738 0.901

Table 2: Validation of moduleC1 andC2 for malwarevs. benign
code classification using a detection threshold = 0.5 (FP = false pos-
itive rate, DR = detection rate).

packed benign). Our unpacker was able to correctly extract
hidden code from 169 packed benign (76.1%) and from
1,943 packed malware (93.5%). Among the 188 packed ex-
ecutables that module B was not able to unpack, 25 (1 be-
nign and 24 malware) caused an “application crash” error,
whereas 29 (all malware) caused a “non-win32 application”
error (likely because of a corrupted PE header).

We also measured the time needed for the unpacker to
analyze an executable. We found that the average time for
analyzing a malware executable was 4.7 minutes, whereas
the average time for the analysis of a benign executable was
5.6 minutes.

Detection of Malicious Code (Modules C1 and C2). In
order to evaluate moduleC1 we constructed a labeled
dataset of code sections extracted from non-packed benign
(NPBDset) and non-packed malware (NPMDset). In total,
we had 2,377 non-packed executables. The PE analysis tool
we used to extract the content of the code section failed in
certain cases, either because the PE header was found to be
corrupted, or because the PE file did not contain any sec-
tion marked as executable. After filtering out these cases
we obtained a labeled dataset of 2,357 code sections, 2,229
extracted from non-packed benign and 128 extracted from
non-packed malware. We randomly split this dataset in two
parts while maintaining the proportions between the two
classes (malware and benign). We used 80% of the dataset
for training the classifier, and 20% for testing. The results
are reported in Table 2 for a detection threshold equal to 0.5.

We evaluated the classification accuracy ofC2 in a way
similar to C1. We ran our dynamic unpacker on the entire
dataset of malware (MDset) and on the dataset of packed
benign (PBDset). We first consideredbpagedumps of the
last layer of unpacking (see Section 2.2). We obtained 3,856
bpagedumps from malware samples and 169bpagedumps
from the packed benign. Given this dataset of labeled (mal-
ware or benign) bpagedumps, we randomly split (main-
taining the proportion between the two classes) in two parts.
We used 80% of the dataset for training purposes and the re-
maining 20% for testing. The results are reported in Table 2,
second row. The third row in Table 2 reports the results of a
similar experiment using thebbexecdumps of the last layer
of unpacking (see Section 2.2), instead of thebpagedumps.
It is easy to see that usingbpagedumps provides better re-

sults, therefore in the following we only consider the results
obtained usingbpagedumps.

The average time needed for the classification of an exe-
cutable by moduleC was 0.032 seconds.

3.3 Validation of McBoost

In order to validate the ability of our McBoost system
to correctly detect and rank previously unknown malicious
executables, we randomly chose 80% of the patterns in the
labeled datasets PMDset, NPMDset, PBDset, and NPBD-
set for training the single classifiers in our system (i.e.,A1,
A2, A3, C1, andC2). We then used the remaining 20% of
these datasets plus the entire OMDset for testing. Overall,
the test dataset contained 3,830 malware and 503 benign ex-
ecutables. ModuleA classified 2,471 of these executables
as packed, and they were sent to the unpacker for extract-
ing the hidden code. The remaining 1,862 executables were
classified as non-packed. The unpacker was able to extract
the hidden code from 1,441 out of 2,471 packed executables
(58.3%).

Therefore, 1,862 executables were sent to moduleC1,
1,441 were sent toC2 (i.e., 3,303 executables were sent to
moduleC, in total), and 1,030 where stored in the list of
(likely) “heavily” packed executables that need manual in-
spection. Among these 1,030 executables, 8 were packed
benign and the remaining 1,022 were malware. We found
that 613 out of these 1,022 malware caused an application
crash during the unpacking process, whereas 60 of them
generated a “non-win32 application” error message (likely
because of a corrupted PE header).

The results of the classification of the 3,303 executables
sent to modulesC (either toC1 or C2) are reported in Ta-
ble 3. Table 3 reports the values of detection threshold, false
positives, detection rate and accuracy for significant points
on the ROC curve. The Area Under the ROC curve (AUC)
is equal to 0.977. It is also worth noting that if we set the de-
tection threshold to 0.902, McBoost is still able to correctly
detect 61.7% of the malware with no false positives, i.e., no
benign executable will be considered for further (possibly
manual) analysis. On the other hand, if we are willing to
accept some false positives, i.e., if we can afford to perform
a detailed, manual analysis of more executables, but we do
not want many false negatives because we are not willing
to miss many unknown malware, we can set the threshold
to 0.007 and obtain 99.3% detection rate with 27% of false
positives.

The average time needed for classifying an executable
found to be non-packed by moduleA was around 1.06 sec-
onds in average (1.025 sec. for moduleA and 0.032 sec. for
moduleC), whereas the average time needed to classify an
executable sent to the unpacker was around 4.7 minutes for
malware and 5.6 minutes for benign executables.

Threshold False Positive Rate Detection Rate Accuracy
0.902 0 0.617 0.673
0.686 0.010 0.836 0.859
0.500 0.025 0.856 0.873
0.284 0.050 0.881 0.891
0.126 0.100 0.916 0.913
0.029 0.200 0.980 0.953
0.007 0.270 0.993 0.954

Table 3: Significant values of the trade-off between false positives,
detection rate, and accuracy for different values of the detection
threshold of McBoost. The AUC is 0.977.

Classifier % Unpacked Accuracy FP DR AUC
McBoost 57.9% 0.870 0.0 0.727 0.930
KM - 0.429 0.875 0.833 0.472

Table 4: Comparison between McBoost and the approach presented
in [9] on a difficult dataset (FP = false positive rate, DR = detection
rate).

Comparison to Previous Work. Table 4 shows the com-
parison between McBoost and the approach proposed by
Kolter et al in [9], which we called KM. We implemented
the classifier proposed in [9] according to the description
given in the paper, and we set the same values for the pa-
rameters such as the value ofn, the number of features to be
selected etc., as suggested in the paper. We trained KM sim-
ilarly to McBoost, using 80% of the PMDset and NPMD-
set as malware dataset, and 80% of BDset for the benign
dataset. Afterwards we tested both McBoost and KM on the
same test set consisting of 20% of PBDset (packed benigns)
and NPMDset (non-packed malware). The results reported
in Table 4 confirm the fact that KM is biased towards de-
tecting packed executables as malware and non-packed ex-
ecutables as benign, regardless of the nature of the hidden
or non-packed code. On the other hand, McBoost still has
an accuracy of 87% and an AUC of 0.93 even in the case of
such a “difficult” dataset.

3.4 Discussion of the Results

We would like to emphasize that the most important re-
sult is the value of the AUC of McBoost, which is equal
to 0.977 in our experiments, because the AUC can be
interpreted as the probability of scoring a malware exe-
cutable higher than a benign executable [5], in terms of
P (malware|e). Since our system is intended for priori-
tizing (according to the ranking given by McBoost’s output,
P (malware|e)) the analysis of the most suspicious bina-
ries, a value of the AUC close to 1 (which is the maximum
possible value) is intuitively more important than the ac-
curacy, whose value is dependent from thea priori class
probabilities and from the detection threshold.

The utility of McBoost is intuitive. Suppose we need
to analyze a large set of executables downloaded by a P2P
or web executable crawler, or by andexecutable sniffer

in order to collect samples of new (zero-day) malware.
In this case, once we filter out the known malware us-
ing signature-based AV-software, we expect the dataset will
contain mostly benign executables and a small fraction of
unknown malware. Also, we expect most of the benign to
be non-packed (in Section 3.1.1 we found that only 1.2%
of the executable of a typical Windows XP home user in-
stallation were packed). Given that non-packed executables
can be classified in around 1.06 seconds in average, Mc-
Boost allows us to quickly filter out most of the benign ex-
ecutables because they will pass from moduleA to module
C directly, and will receive a lowP (malware|e) (i.e., a
low rank). On the other hand, existing approaches for ana-
lyzing executables downloaded/collected from the Internet
most likely have to run each unknown executable (e.g., af-
ter running AV tools, and checking a whitelist) through an
unpacker and/or a program analyzer. As suggested by our
results above, it takes at least several minutes to analyze
each executable just to determine whether there is hidden
code and if so extract the code. If we assume that the ma-
jority of the executables are non-packed benigns, this pro-
cess is very wasteful and inefficient. Therefore, McBoost
can achieve huge time savings when processing a large col-
lection of executables from the Internet. Without McBoost
we would need to analyze all of the binaries (after black-
list/white-list filtering) using expensive analysis techniques,
thus increasing the overall cost of the analysis to the point
of infeasibility.

The total processing time for the validation of McBoost
using the 4,330 executables (3,830 malware plus 503 be-
nigns, as described above), was about 195 hours (slightly
more than 8 days). On the other hand, processing all the
4,330 test samples directly using our dynamic unpacker
(i.e., assuming we do not have our moduleA classifier)
would take about 347 hours (slightly less than 14 and1

2
days). Therefore, McBoost required only 56.2% of the time
compared to running all the executables through moduleB
or similar binary analysis tools. It is worth noting, though,
that our test dataset contained more malware samples than
benigns (88.4% of the executables were malware). As men-
tioned before, by crawling P2P networks (or the Internet in
general) looking for executables may very likely produce
(after white- and black-listing) a dataset containing a small
percentage of new malware and a large percentage of non-
packed benigns. In this case we expect the time saving due
to McBoost to be much higher. For example, if we collected
a dataset that contains about 85% of non-packed benign
executables, 2% of packed benign, and 13% of unknown
malware (which for the sake of this example we assume
all packed), we expect McBoost will require only around
13.4% of the time, compared to using only tools based on
dynamic binary analysis similar to moduleB.

4 Related Work

In [16], Royal et al. proposed Polyunpack, an universal
unpacker based on a combination of static and dynamic bi-
nary analysis. Given a packed PE executable, a static view
of the code is constructed first. If the executable tries to ex-
ecute any code that is not present in the static view, Polyun-
pack will detect this as an attempt to running hidden code
and will try to reconstruct the original executable.

Renovo, a different and somewhat more effective tool
for universal unpacking using dynamic binary analysis, was
presented by Kang et al. in [8]. Renovo is able to distin-
guish among different layers of unpacking and dump the
memory pages that contain the hidden code for each layer.

In [17] Shultz et al. present data mining techniques
for detecting new malicious executables. They extract sev-
eral features from the executables, for example the list of
DLLs used by the binary, the list of DLL function calls,
and the number of different system calls used within each
DLL. Also they analyze byte sequences extracted from the
hexdumpof an executable (i.e., its hexadecimal represen-
tation) [17]. Our work is different from [17] because we
adopt a different approach. We first distinguish between
packedand non-packedexecutables, and then (if needed)
we extract and classify the hidden or non-packed code into
malwareor benign. Also, we measure a different set of fea-
tures extracted from PE executables, compared to [17].

N -gram analysis for malware detection has been studied
in a number of works [9, 15, 25]. To the best of our knowl-
edge, among these the work closest to ours is [9]. Kolter
et al. [9] usen-gram analysis on entire PE files to distin-
guish between malware and benign executables. However,
they do not distinguish between packed and non-packed ex-
ecutables. They collect 1,651 malware samples and 1,971
benign samples [9]. They take their dataset of malware as
it is without considering whether the executables they col-
lected are packed or not, and show that their best classifier
(Boosted J48) achieves an AUC≃ 0.996. Because most of
today’s malware are packed [4, 20], not taking this into ac-
count during the training and test of the classifier may pro-
duce over-optimistic results. In the presence of a training
dataset containing mainly packed malware and non-packed
benign, the approach of Kolter et al. may actually be biased
in distinguishing between packed and non-packed executa-
bles, instead of malware vs. benign executables, as we show
in Section 3. Although we usen-gram analysis in our Mc-
Boost, our approach is significantly different from [9]. We
first recognize that most of the malware are packed, and that
only distinguishing between packed and non-packed exe-
cutables may not be enough to actually detect malicious
executables. Therefore, we first classify executables into
packed and non-packed, and for the packed executables we
try to extract the hidden code using an universal unpacker

similar in principle to Renovo [8]. We then classify the
extracted hidden code (or the non-packed code, if an exe-
cutable is found to be non-packed) into eithermaliciousor
benign.

5 Conclusion

We presented McBoost, a fast statistical malware detec-
tion tool intended to improve the scalability of existing mal-
ware collection and analysis techniques. We discussed how
McBoost can be used in case when a large collection of bi-
naries that contains both unknown (zero-day) malware and
benign executables needs to be analyzed in order to discover
new malware samples for which a detection signature can
be written. McBoost allows us to quickly and accurately
filter out most of the benign and prioritize further detailed
analysis of the remaining suspicious binaries. This allows
us to significantly reduce the workload of tools (and hu-
mans) that perform detailed binary analysis.

We evaluated the accuracy and performance of the in-
dividual modules in McBoost as well as the system as a
whole. The results showed that McBoost has an over-
all classification accuracy of 87.3% and an AUC equal to
0.977. In addition, the running time of McBoost on our test
data shows that the overal computation time for analyzing
large sets of executables can be reduced to only a fraction
(e.g., 13.4%) of the time needed if we only used dynamic-
analysis-based tools.

References

[1] F. Bellard. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, 2005.

[2] D. Bilar. Opcode as predictors for malware.International
Journal of Electronic Security and Digital Forensics, 1(2),
2007.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] T. Brosch and M. Morgenstern. Runtime packers: The hid-
den problem? Presented at Black Hat USA 2006.

[5] C. Cortes and M. Mohri. Confidence intervals for the area
under the roc curve. InNIPS 2004: Advances in Neural
Information Processing Systems, 2004.

[6] R. Duin. The combining classifier: to train or not to train?
In International Conference on Pattern Recognition (ICPR),
2002.

[7] A. Kalafut, A. Acharya, and M. Gupta. A study of malware
in peer-to-peer networks. InACM SIGCOMM conference on
Internet measurement, 2006.

[8] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden
code extractor for packed executables. InWORM ’07: Pro-
ceedings of the 5th ACM Workshop on Recurring Malcode,
2007.

[9] J. Z. Kolter and M. A. Maloof. Learning to detect and clas-
sify malicious executables in the wild.Journal of Machine
Learning Research, 7:2721–2744, 2006.

[10] L. I. Kuncheva. Combining Pattern Classifiers: Methods
and Algorithms. Wiley-Interscience, 2004.

[11] A. Niculescu-Mizil and R. Caruana. Predicting good prob-
abilities with supervised learning. InInternational Confer-
ence on Machine Learning (ICML), 2005.

[12] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-
class svm classifiers to harden payload-based anomaly de-
tection systems. InInternational Conference on Data Min-
ing (ICDM), 2006.

[13] R. Perdisci, A. Lanzi, and W. Lee. Classification of packed
executables for accurate computer virus detection.Patter
Recognition Letters, 29(14):1941–1946, 2008.

[14] M. B. Prince, L. Holloway, E. Langheinrich, B. M. Dahl,
and A. M. Keller. Understanding how spammers steal your
e-mail address: An analysis of the first six months of data
from project honey pot. In2nd Conference on Email and
Anti-Spam (CEAS), 2005.

[15] D. K. S. Reddy and A. K. Pujari. N-gram analysis for com-
puter virus detection.Journal in Computer Virology, 2(3),
2006.

[16] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
Polyunpack: Automating the hidden-code extraction of
unpack-executing malware. InAnnual Computer Security
Applications Conference (ACSAC), 2006.

[17] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data
mining methods for detection of new malicious executables.
In IEEE Symposium on Security and Privacy, 2001.

[18] A. Shevchenko. The evolution of self-defense technologies
in malware, 2007. http://www.viruslist.com/
analysis?pubid=204791949.

[19] S. Shin, J. Jung, and H. Balakrishnan. Malware prevalence
in the kazaa file-sharing network. InACM SIGCOMM Con-
ference on Internet measurement, 2006.

[20] A. Stepan. Improving proactive detection of packed
malware, March 2006. http://www.virusbtn.
com/virusbulletin/archive/2006/03/
vb200603-packed.dkb.

[21] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with strider
honeymonkeys: Finding web sites that exploit browser vul-
nerabilities. InNDSS, 2006.

[22] T. Werner. PE Hunter, 2007.http://honeytrap.
mwcollect.org/pehunter.

[23] Y. Yang and J. O. Pedersen. A comparative study on feature
selection in text categorization. InInternational Conference
on Machine Learning (ICML), 1997.

[24] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for mal-
ware detection and analysis. InCCS ’07: 14th ACM confer-
ence on Computer and communications security, 2007.

[25] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang. Malicious
codes detection based on ensemble learning. InAutonomic
and Trusted Computing (ATC), 2007.

[26] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou. Collecting
autonomous spreading malware using high-interaction hon-
eypots. InICICS 2007, 2007.

